Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Columns Overview | Preprocessing Data: Part I
Analyzing and Visualizing Real-World Data

bookColumns Overview

We can see that only two types of data are presented in the dataframe: object and int64. Columns that have an object data type contain string objects, which makes aggregation impossible for them. Among these columns are Weekly_Sales, Temperature, Fuel_Price, and others. It is obvious that all the mentioned columns must be numerical. We might be interested in comparing the revenue for different dates, but with object data, it's impossible.

Let's solve problems step by step. First, let's remind ourselves what our data looks like by outputting a single row.

12345678
# Loading the library import pandas as pd # Reading the data df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/72be5dde-f3e6-4c40-8881-e1d97ae31287/shops_data_init.csv') # Displaying a single dataframe row print(df.sample())
copy

Pay close attention to the values and try to find out why most of the columns are considered object columns.

question mark

What is wrong with the 'Temperature', 'Fuel_Price', and 'Unemployment' columns?

Select the correct answer

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 3

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Запитайте мені питання про цей предмет

Сумаризуйте цей розділ

Покажіть реальні приклади

Awesome!

Completion rate improved to 3.45

bookColumns Overview

Свайпніть щоб показати меню

We can see that only two types of data are presented in the dataframe: object and int64. Columns that have an object data type contain string objects, which makes aggregation impossible for them. Among these columns are Weekly_Sales, Temperature, Fuel_Price, and others. It is obvious that all the mentioned columns must be numerical. We might be interested in comparing the revenue for different dates, but with object data, it's impossible.

Let's solve problems step by step. First, let's remind ourselves what our data looks like by outputting a single row.

12345678
# Loading the library import pandas as pd # Reading the data df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/72be5dde-f3e6-4c40-8881-e1d97ae31287/shops_data_init.csv') # Displaying a single dataframe row print(df.sample())
copy

Pay close attention to the values and try to find out why most of the columns are considered object columns.

question mark

What is wrong with the 'Temperature', 'Fuel_Price', and 'Unemployment' columns?

Select the correct answer

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 3
some-alt