Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Columns Overview | Preprocessing Data: Part I
Analyzing and Visualizing Real-World Data
course content

Зміст курсу

Analyzing and Visualizing Real-World Data

Analyzing and Visualizing Real-World Data

1. Preprocessing Data: Part I
2. Preprocessing Data: Part II
3. Analyzing Data
4. Visualizing Data

bookColumns Overview

We can see that only two types of data are presented in the dataframe: object and int64. Columns that have an object data type contain string objects, which makes aggregation impossible for them. Among these columns are Weekly_Sales, Temperature, Fuel_Price, and others. It is obvious that all the mentioned columns must be numerical. We might be interested in comparing the revenue for different dates, but with object data, it's impossible.

Let's solve problems step by step. First, let's remind ourselves what our data looks like by outputting a single row.

12345678
# Loading the library import pandas as pd # Reading the data df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/72be5dde-f3e6-4c40-8881-e1d97ae31287/shops_data_init.csv') # Displaying a single dataframe row print(df.sample())
copy

Pay close attention to the values and try to find out why most of the columns are considered object columns.

What is wrong with the `'Temperature'`, `'Fuel_Price'`, and `'Unemployment'` columns?

What is wrong with the 'Temperature', 'Fuel_Price', and 'Unemployment' columns?

Виберіть правильну відповідь

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 3
some-alt