Exploring Data [3/3]
Summary of DataFrame' columns
If you need additional information about DataFrame, i.e., memory usage, number of non-null values in addition to the considered in the previous chapter, use the .info() method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' columns information print(df.info())
Numerical columns' summary
For numerical columns you can get the mean, minimal, maximal values, 25%, 50%, 75% quantiles, standart deviation using the .describe() method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Numerical columns' summary print(df.describe())
Дякуємо за ваш відгук!
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Запитайте мені питання про цей предмет
Сумаризуйте цей розділ
Покажіть реальні приклади
Чудово!
Completion показник покращився до 3.33
Exploring Data [3/3]
Свайпніть щоб показати меню
Summary of DataFrame' columns
If you need additional information about DataFrame, i.e., memory usage, number of non-null values in addition to the considered in the previous chapter, use the .info() method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' columns information print(df.info())
Numerical columns' summary
For numerical columns you can get the mean, minimal, maximal values, 25%, 50%, 75% quantiles, standart deviation using the .describe() method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Numerical columns' summary print(df.describe())
Дякуємо за ваш відгук!