Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Linear Algebra Operations | Getting into NumPy Basics
Getting into NumPy Basics
course content

Зміст курсу

Getting into NumPy Basics

book
Linear Algebra Operations

NumPy offers a plethora of functions for executing linear algebra operations on arrays, including matrix multiplication, transposition, inversion, and decomposition. Key functions include:

  • dot(): Computes the dot product of two arrays;
  • transpose(): Transposes an array;
  • inv(): Computes the inverse of a matrix;
  • linalg.svd(): Performs the singular value decomposition of a matrix;
  • linalg.eig(): Determines the eigenvalues and eigenvectors of a matrix.
Завдання
test

Swipe to begin your solution

  1. Compute the dot product of the arrays.
  2. Transpose the first array.
  3. Compute the inverse of the second array.

Рішення

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 5
We're sorry to hear that something went wrong. What happened?
some-alt