Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Problem C. Minimum Path in Triangle | Solutions
Dynamic Programming

bookProblem C. Minimum Path in Triangle

The key to the solution is forming all possible minimum-cost paths from top to bottom row. You can not be sure which one will have minimum cost, so let's traverse a triangle and update values in the cells:

  • triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]: thats how you can reach cell [i, j]` with min cost
  • triangle[i][0] += triangle[i-1][0], triangle[i][i-1] += triangle[i-1][i-1] : extreme cases (number of columns in each row is equal to number of row).

After updating, choose the minimum path cost, which is in the last row.

1234567891011121314151617181920
def minPath(triangle): for i in range(1, len(triangle)): for j in range(i+1): small = 10000000 if j > 0: small = triangle[i-1][j-1] if j < i: small = min(small, triangle[i-1][j]) triangle[i][j] += small return min(triangle[-1]) triangle = [[90], [72, 6], [3, 61, 51], [90, 70, 23, 100], [79, 92, 72, 14, 1], [7, 97, 29, 100, 93, 93], [52, 95, 21, 36, 69, 69, 14], [33, 82, 20, 37, 79, 83, 21, 45]] print(minPath(triangle))
copy

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Сумаризуйте цей розділ

Пояснити код у file

Пояснити, чому file не вирішує завдання

close

Awesome!

Completion rate improved to 8.33

bookProblem C. Minimum Path in Triangle

Свайпніть щоб показати меню

The key to the solution is forming all possible minimum-cost paths from top to bottom row. You can not be sure which one will have minimum cost, so let's traverse a triangle and update values in the cells:

  • triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]: thats how you can reach cell [i, j]` with min cost
  • triangle[i][0] += triangle[i-1][0], triangle[i][i-1] += triangle[i-1][i-1] : extreme cases (number of columns in each row is equal to number of row).

After updating, choose the minimum path cost, which is in the last row.

1234567891011121314151617181920
def minPath(triangle): for i in range(1, len(triangle)): for j in range(i+1): small = 10000000 if j > 0: small = triangle[i-1][j-1] if j < i: small = min(small, triangle[i-1][j]) triangle[i][j] += small return min(triangle[-1]) triangle = [[90], [72, 6], [3, 61, 51], [90, 70, 23, 100], [79, 92, 72, 14, 1], [7, 97, 29, 100, 93, 93], [52, 95, 21, 36, 69, 69, 14], [33, 82, 20, 37, 79, 83, 21, 45]] print(minPath(triangle))
copy

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

close

Awesome!

Completion rate improved to 8.33
Секція 3. Розділ 3
single

single

some-alt