Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Problem B. Minimum path | Problems
Dynamic Programming
course content

Зміст курсу

Dynamic Programming

Dynamic Programming

1. Intro to Dynamic Programming
2. Problems
3. Solutions

bookProblem B. Minimum path

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a two-dimensional array mat with values in it. Each value means the price we should pay for entering it. There is frog sitting in the top-left cell who wants to move to top-right. The frog can move to the nearest cell either right or down per one move. When it enters a cell, frog has to pay mat[i][j] for visiting it. Your goal is to find a path with minimal price. Return the cost of such a path.

Example 1

The orange path is minimum and costs 25.

Example 2

Input :

[[1, 3, 4],

[2, 1, 5],

[4, 6, 7]]

Output: 16

The path looks like:

Example 3

Input:

[[1, 2, 4],

[8, 5, 1]]

Output: 8

The Optimal Substructure here is to find the minimum path for each cell based on previous ones:

mat[i][j] = mat[i][j] + min(mat[i-1][j], mat[i][j-1])

This way, the minimum path to the mat[i][j] cell includes the price of this cell and the minimum price to one of the available cells (top or left).

Завдання

Create an algorithm to find the shortest path for the frog.

  1. Use data structure mat[n][n] as DS for storing the cost to the cell mat[i][j].
  2. Consider that you can visit current cell mat[i][j] only from left or top cell (if it possible).
  3. The answer is the value of mat[-1][-1].

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
toggle bottom row

bookProblem B. Minimum path

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a two-dimensional array mat with values in it. Each value means the price we should pay for entering it. There is frog sitting in the top-left cell who wants to move to top-right. The frog can move to the nearest cell either right or down per one move. When it enters a cell, frog has to pay mat[i][j] for visiting it. Your goal is to find a path with minimal price. Return the cost of such a path.

Example 1

The orange path is minimum and costs 25.

Example 2

Input :

[[1, 3, 4],

[2, 1, 5],

[4, 6, 7]]

Output: 16

The path looks like:

Example 3

Input:

[[1, 2, 4],

[8, 5, 1]]

Output: 8

The Optimal Substructure here is to find the minimum path for each cell based on previous ones:

mat[i][j] = mat[i][j] + min(mat[i-1][j], mat[i][j-1])

This way, the minimum path to the mat[i][j] cell includes the price of this cell and the minimum price to one of the available cells (top or left).

Завдання

Create an algorithm to find the shortest path for the frog.

  1. Use data structure mat[n][n] as DS for storing the cost to the cell mat[i][j].
  2. Consider that you can visit current cell mat[i][j] only from left or top cell (if it possible).
  3. The answer is the value of mat[-1][-1].

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2
toggle bottom row

bookProblem B. Minimum path

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a two-dimensional array mat with values in it. Each value means the price we should pay for entering it. There is frog sitting in the top-left cell who wants to move to top-right. The frog can move to the nearest cell either right or down per one move. When it enters a cell, frog has to pay mat[i][j] for visiting it. Your goal is to find a path with minimal price. Return the cost of such a path.

Example 1

The orange path is minimum and costs 25.

Example 2

Input :

[[1, 3, 4],

[2, 1, 5],

[4, 6, 7]]

Output: 16

The path looks like:

Example 3

Input:

[[1, 2, 4],

[8, 5, 1]]

Output: 8

The Optimal Substructure here is to find the minimum path for each cell based on previous ones:

mat[i][j] = mat[i][j] + min(mat[i-1][j], mat[i][j-1])

This way, the minimum path to the mat[i][j] cell includes the price of this cell and the minimum price to one of the available cells (top or left).

Завдання

Create an algorithm to find the shortest path for the frog.

  1. Use data structure mat[n][n] as DS for storing the cost to the cell mat[i][j].
  2. Consider that you can visit current cell mat[i][j] only from left or top cell (if it possible).
  3. The answer is the value of mat[-1][-1].

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a two-dimensional array mat with values in it. Each value means the price we should pay for entering it. There is frog sitting in the top-left cell who wants to move to top-right. The frog can move to the nearest cell either right or down per one move. When it enters a cell, frog has to pay mat[i][j] for visiting it. Your goal is to find a path with minimal price. Return the cost of such a path.

Example 1

The orange path is minimum and costs 25.

Example 2

Input :

[[1, 3, 4],

[2, 1, 5],

[4, 6, 7]]

Output: 16

The path looks like:

Example 3

Input:

[[1, 2, 4],

[8, 5, 1]]

Output: 8

The Optimal Substructure here is to find the minimum path for each cell based on previous ones:

mat[i][j] = mat[i][j] + min(mat[i-1][j], mat[i][j-1])

This way, the minimum path to the mat[i][j] cell includes the price of this cell and the minimum price to one of the available cells (top or left).

Завдання

Create an algorithm to find the shortest path for the frog.

  1. Use data structure mat[n][n] as DS for storing the cost to the cell mat[i][j].
  2. Consider that you can visit current cell mat[i][j] only from left or top cell (if it possible).
  3. The answer is the value of mat[-1][-1].

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 2. Розділ 2
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt