Calculating the Number of Missing Values
It should be noted that it isn't convenient to check each value of the dataset for the NaN. It is more convenient to see the number of missing values to conclude columns where we have NaNs.
As you remember, we have two functions to check for the missing values. To calculate the sum, just use the .sum()
function. Thus, in general, we have 2 options for outputting the number of NaNs for each column:
data.isna().sum()
# Or
data.isnull().sum()
Okay, nothing complicated. Let's move on the task.
Swipe to start coding
- Calculate the number of missing values for the dataset using one of the mentioned functions.
- Output the result.
Try to draw your own conclusions.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Awesome!
Completion rate improved to 3.03
Calculating the Number of Missing Values
Свайпніть щоб показати меню
It should be noted that it isn't convenient to check each value of the dataset for the NaN. It is more convenient to see the number of missing values to conclude columns where we have NaNs.
As you remember, we have two functions to check for the missing values. To calculate the sum, just use the .sum()
function. Thus, in general, we have 2 options for outputting the number of NaNs for each column:
data.isna().sum()
# Or
data.isnull().sum()
Okay, nothing complicated. Let's move on the task.
Swipe to start coding
- Calculate the number of missing values for the dataset using one of the mentioned functions.
- Output the result.
Try to draw your own conclusions.
Рішення
Дякуємо за ваш відгук!
Awesome!
Completion rate improved to 3.03single