Challenge: Join Customer and Order Data
After learning the fundamentals of joining data frames in R, you are now ready to practice combining real-world datasets. Imagine you have two data frames: one containing customer information, and another containing order details. Your goal is to merge these datasets using appropriate join functions from the dplyr package, ensuring you can analyze unified customer and order data for further insights.
Swipe to start coding
Practice joining customer and order data frames to create a unified dataset.
- Use
left_join()to combine all rows fromcustomerswith matching rows fromordersbased oncustomer_id. - Store the result in a variable named
customer_orders_left. - Use
inner_join()to combine only rows fromcustomersthat have matching rows inordersbased oncustomer_id. - Store the result in a variable named
customer_orders_inner.
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Чудово!
Completion показник покращився до 4.17
Challenge: Join Customer and Order Data
Свайпніть щоб показати меню
After learning the fundamentals of joining data frames in R, you are now ready to practice combining real-world datasets. Imagine you have two data frames: one containing customer information, and another containing order details. Your goal is to merge these datasets using appropriate join functions from the dplyr package, ensuring you can analyze unified customer and order data for further insights.
Swipe to start coding
Practice joining customer and order data frames to create a unified dataset.
- Use
left_join()to combine all rows fromcustomerswith matching rows fromordersbased oncustomer_id. - Store the result in a variable named
customer_orders_left. - Use
inner_join()to combine only rows fromcustomersthat have matching rows inordersbased oncustomer_id. - Store the result in a variable named
customer_orders_inner.
Рішення
Дякуємо за ваш відгук!
single