Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Poisson Distribution 2/3 | Distributions
Probability Theory Update

Свайпніть щоб показати меню

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 2
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 5. Розділ 2
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt