Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Cumulative Distribution Function (CDF) 2/2 | Probability Functions
Probability Theory Update

Свайпніть щоб показати меню

book
Cumulative Distribution Function (CDF) 2/2

Probability mass function over a range:

In some cases, we want to know the probability that a random variable is equal to numbers over a range.

Formula:

P(a < X <= b) = Fx(a) - Fx(b)

  • P(a < X <= b) - the probability that a random variable X takes a value within the rage (a; b].

  • Fx(a) - applying CMT to find a probability that a random variable X takes a value less than or a.

  • Fx(b) - applying CMT to find a probability that a random variable X takes a value less than or b.

Example:

Calculate the probability a fair coin will succed in no more than 8 but no less than 4 cases (4; 8] if we have 15 attempts. We assume that success means getting a head.

Python realization:

12345678910111213141516171819
# Import required library import scipy.stats as stats # The probability of getting 8 successes prob_8 = stats.binom.pmf(8, n = 15, p = 0.5) # The probability of getting 4 success prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_8 - prob_4 print("The probability is", probability * 100, "%")
copy

Explanation

According to the formula, we subtract the probability that a random variable will take a value less than or four from the probability that a random value will take a value less than or 8.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 5
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

Awesome!

Completion rate improved to 3.7

book
Cumulative Distribution Function (CDF) 2/2

Probability mass function over a range:

In some cases, we want to know the probability that a random variable is equal to numbers over a range.

Formula:

P(a < X <= b) = Fx(a) - Fx(b)

  • P(a < X <= b) - the probability that a random variable X takes a value within the rage (a; b].

  • Fx(a) - applying CMT to find a probability that a random variable X takes a value less than or a.

  • Fx(b) - applying CMT to find a probability that a random variable X takes a value less than or b.

Example:

Calculate the probability a fair coin will succed in no more than 8 but no less than 4 cases (4; 8] if we have 15 attempts. We assume that success means getting a head.

Python realization:

12345678910111213141516171819
# Import required library import scipy.stats as stats # The probability of getting 8 successes prob_8 = stats.binom.pmf(8, n = 15, p = 0.5) # The probability of getting 4 success prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_8 - prob_4 print("The probability is", probability * 100, "%")
copy

Explanation

According to the formula, we subtract the probability that a random variable will take a value less than or four from the probability that a random value will take a value less than or 8.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

close

Awesome!

Completion rate improved to 3.7

Свайпніть щоб показати меню

some-alt