Cumulative Distribution Function (CDF) 2/2
Probability mass function over a range:
In some cases, we want to know the probability that a random variable is equal to numbers over a range.
Formula:
P(a < X <= b) = Fx(a) - Fx(b)
- P(a < X <= b) - the probability that a random variable X takes a value within the rage (a; b].
- Fx(a) - applying CMT to find a probability that a random variable X takes a value less than or a.
- Fx(b) - applying CMT to find a probability that a random variable X takes a value less than or b.
Example:
Calculate the probability a fair coin will succed in no more than 8 but no less than 4 cases (4; 8] if we have 15 attempts. We assume that success means getting a head.
Python realization:
12345678910111213141516171819# Import required library import scipy.stats as stats # The probability of getting 8 successes prob_8 = stats.binom.pmf(8, n = 15, p = 0.5) # The probability of getting 4 success prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_8 - prob_4 print("The probability is", probability * 100, "%")
Explanation
According to the formula, we subtract the probability that a random variable will take a value less than or four from the probability that a random value will take a value less than or 8.
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Сумаризуйте цей розділ
Пояснити код у file
Пояснити, чому file не вирішує завдання
Awesome!
Completion rate improved to 3.7
Cumulative Distribution Function (CDF) 2/2
Свайпніть щоб показати меню
Probability mass function over a range:
In some cases, we want to know the probability that a random variable is equal to numbers over a range.
Formula:
P(a < X <= b) = Fx(a) - Fx(b)
- P(a < X <= b) - the probability that a random variable X takes a value within the rage (a; b].
- Fx(a) - applying CMT to find a probability that a random variable X takes a value less than or a.
- Fx(b) - applying CMT to find a probability that a random variable X takes a value less than or b.
Example:
Calculate the probability a fair coin will succed in no more than 8 but no less than 4 cases (4; 8] if we have 15 attempts. We assume that success means getting a head.
Python realization:
12345678910111213141516171819# Import required library import scipy.stats as stats # The probability of getting 8 successes prob_8 = stats.binom.pmf(8, n = 15, p = 0.5) # The probability of getting 4 success prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_8 - prob_4 print("The probability is", probability * 100, "%")
Explanation
According to the formula, we subtract the probability that a random variable will take a value less than or four from the probability that a random value will take a value less than or 8.
Дякуємо за ваш відгук!
Awesome!
Completion rate improved to 3.7single