Preparation
This chapter is dedicated to different approaches to find minimum-weighted paths on graphs. We work with oriented weighted graphs here.
To solve problems, we’ll use a pre-implemented class Graph
defined with an adjacency matrix, since each edge has some weight that will be stored in the matrix.
1234567891011121314151617class Graph: def __init__(self, vertices=0): # init graph with this number of vertices self.g = [[0 for _ in range(vertices)] for _ in range(vertices)] def addEdge(self, u, v, w, o = False): # u - start vertex, v - end vertex, w - weight of edge, o - is it oriented self.g[u][v] = w if not o: self.g[v][u] = w def __str__(self): out = "" for row in self.g: out += str(row) + ' ' return out
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Awesome!
Completion rate improved to 7.69
Preparation
Свайпніть щоб показати меню
This chapter is dedicated to different approaches to find minimum-weighted paths on graphs. We work with oriented weighted graphs here.
To solve problems, we’ll use a pre-implemented class Graph
defined with an adjacency matrix, since each edge has some weight that will be stored in the matrix.
1234567891011121314151617class Graph: def __init__(self, vertices=0): # init graph with this number of vertices self.g = [[0 for _ in range(vertices)] for _ in range(vertices)] def addEdge(self, u, v, w, o = False): # u - start vertex, v - end vertex, w - weight of edge, o - is it oriented self.g[u][v] = w if not o: self.g[v][u] = w def __str__(self): out = "" for row in self.g: out += str(row) + ' ' return out
Дякуємо за ваш відгук!
single