Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Implementing Gaussian Mixture Models | GMMs
Cluster Analysis

Свайпніть щоб показати меню

book
Challenge: Implementing Gaussian Mixture Models

Завдання

Swipe to start coding

You are given a synthetic dataset stored in the data variable.

  • Initialize a Gaussian mixture model with 3 clusters, set random_state to 42, and store it in the gmm variable.

  • Fit the model on the dataset, predict the cluster labels and store the result in the labels variable.

  • For each cluster i, extract the points belonging to this cluster and store the result in the cluster_points variable.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 6. Розділ 6
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

Awesome!

Completion rate improved to 2.94

book
Challenge: Implementing Gaussian Mixture Models

Завдання

Swipe to start coding

You are given a synthetic dataset stored in the data variable.

  • Initialize a Gaussian mixture model with 3 clusters, set random_state to 42, and store it in the gmm variable.

  • Fit the model on the dataset, predict the cluster labels and store the result in the labels variable.

  • For each cluster i, extract the points belonging to this cluster and store the result in the cluster_points variable.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

close

Awesome!

Completion rate improved to 2.94

Свайпніть щоб показати меню

some-alt