Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Implementing Linear Regression | Preparing for Neural Networks
PyTorch Essentials
course content

Зміст курсу

PyTorch Essentials

PyTorch Essentials

1. PyTorch Basics
2. Preparing for Neural Networks
3. Neural Networks

book
Challenge: Implementing Linear Regression

Завдання
test

Swipe to begin your solution

You are provided with a dataset that contains information about the number of hours students studied and their corresponding test scores. Your task is to train a linear regression model on this data.

  1. Convert these columns into PyTorch tensors, and reshape them to ensure they are 2D with shapes [N, 1].
  2. Define a simple linear regression model.
  3. Use MSE as the loss function.
  4. Define optimizer as SGD with the learning rate equal to 0.01.
  5. Train the linear regression model to predict test scores based on the number of hours studied. At each epoch:
    • Compute predictions on X_tensor;
    • Compute the loss;
    • Reset the gradient;
    • Perform backward pass;
    • Update the parameters.
  6. Access the model's parameters (weights and bias).

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 4
toggle bottom row

book
Challenge: Implementing Linear Regression

Завдання
test

Swipe to begin your solution

You are provided with a dataset that contains information about the number of hours students studied and their corresponding test scores. Your task is to train a linear regression model on this data.

  1. Convert these columns into PyTorch tensors, and reshape them to ensure they are 2D with shapes [N, 1].
  2. Define a simple linear regression model.
  3. Use MSE as the loss function.
  4. Define optimizer as SGD with the learning rate equal to 0.01.
  5. Train the linear regression model to predict test scores based on the number of hours studied. At each epoch:
    • Compute predictions on X_tensor;
    • Compute the loss;
    • Reset the gradient;
    • Perform backward pass;
    • Update the parameters.
  6. Access the model's parameters (weights and bias).

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 4
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt