Comparing the Dynamics
That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.
Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.
Swipe to start coding
Visualize the monthly temperature dynamics across clusters. Follow the next steps:
- Import
KMedoidsfunction fromsklearn_extra.cluster. - Create a
KMedoidsobject namedmodelwith 4 clusters. - Fit the 3-15 columns (these are not indices, but positions) of
datatomodel. - Add the
'prediction'column todatawith predicted bymodellabels. - Calculate the monthly averages using
dataand save the result within thedDataFrame:
- Group the observations by the
'prediction'column. - Calculate the mean values.
- Stack the columns into indices (already done).
- Reset the indices.
- Assign
['Group', 'Month', 'Temp']as columns names ofd. - Build
lineplotwith'Month'on the x-axis,'Temp'on the y-axis for each'Group'ofdDataFrame (i.e. separate line and color for each'Group').
Рішення
Дякуємо за ваш відгук!
single
Запитати АІ
Запитати АІ
Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат
Сумаризуйте цей розділ
Пояснити код у file
Пояснити, чому file не вирішує завдання
Чудово!
Completion показник покращився до 3.57
Comparing the Dynamics
Свайпніть щоб показати меню
That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.
Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.
Swipe to start coding
Visualize the monthly temperature dynamics across clusters. Follow the next steps:
- Import
KMedoidsfunction fromsklearn_extra.cluster. - Create a
KMedoidsobject namedmodelwith 4 clusters. - Fit the 3-15 columns (these are not indices, but positions) of
datatomodel. - Add the
'prediction'column todatawith predicted bymodellabels. - Calculate the monthly averages using
dataand save the result within thedDataFrame:
- Group the observations by the
'prediction'column. - Calculate the mean values.
- Stack the columns into indices (already done).
- Reset the indices.
- Assign
['Group', 'Month', 'Temp']as columns names ofd. - Build
lineplotwith'Month'on the x-axis,'Temp'on the y-axis for each'Group'ofdDataFrame (i.e. separate line and color for each'Group').
Рішення
Дякуємо за ваш відгук!
single