Зміст курсу
Identifying Fake News
Data Preprocessing
As a mandatory step in our analysis, we must preprocess our data. Data preprocessing is the process of cleaning, transforming, and organizing the data to make it more suitable for analysis and modeling. This typically involves several steps, such as the following:
- removing missing or duplicate values;
- correcting inconsistencies;
- transforming the data into a format that is easier to manage.
Завдання
- Remove unnecessary columns (for our further analysis):
'title'
,'subject'
, and'date'
. - Use the appropriate method to remove duplicates.
- Use the appropriate methods to shuffle the DataFrame and reset its index.
- Use the appropriate method to check for missing values (
NaN
values).
Mark tasks as Completed
Перейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?
Дякуємо за ваш відгук!
As a mandatory step in our analysis, we must preprocess our data. Data preprocessing is the process of cleaning, transforming, and organizing the data to make it more suitable for analysis and modeling. This typically involves several steps, such as the following:
- removing missing or duplicate values;
- correcting inconsistencies;
- transforming the data into a format that is easier to manage.
Завдання
- Remove unnecessary columns (for our further analysis):
'title'
,'subject'
, and'date'
. - Use the appropriate method to remove duplicates.
- Use the appropriate methods to shuffle the DataFrame and reset its index.
- Use the appropriate method to check for missing values (
NaN
values).
Mark tasks as Completed
Перейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 3
AVAILABLE TO ULTIMATE ONLY