Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Dataset Import | Recognizing Handwritten Digits
Recognizing Handwritten Digits
course content

Зміст курсу

Recognizing Handwritten Digits

bookDataset Import

Begin by importing the necessary data for your upcoming analysis.

Utilize the fetch_openml function from the sklearn.datasets module, a component of the widely used scikit-learn library for machine learning in Python, to access and retrieve datasets from the OpenML repository. Specifically, for this task, it's employed to acquire the MNIST dataset, a renowned collection of handwritten digits frequently employed in image classification challenges.

Завдання

You are required to import the MNIST dataset ("mnist_784"), a popular dataset used for training image processing systems, into your Python environment using the fetch_openml function from the sklearn.datasets module.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Begin by importing the necessary data for your upcoming analysis.

Utilize the fetch_openml function from the sklearn.datasets module, a component of the widely used scikit-learn library for machine learning in Python, to access and retrieve datasets from the OpenML repository. Specifically, for this task, it's employed to acquire the MNIST dataset, a renowned collection of handwritten digits frequently employed in image classification challenges.

Завдання

You are required to import the MNIST dataset ("mnist_784"), a popular dataset used for training image processing systems, into your Python environment using the fetch_openml function from the sklearn.datasets module.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 2
AVAILABLE TO ULTIMATE ONLY
some-alt