Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Regularized Regression Workflow | Advanced Regularization and Model Interpretation
Feature Selection and Regularization Techniques

bookChallenge: Regularized Regression Workflow

Uppgift

Swipe to start coding

In this challenge, you’ll build and compare Ridge and Lasso regression models using a clean machine learning workflow.

Your goal is to:

  1. Load the Diabetes dataset from scikit-learn.
  2. Split it into training and test sets (test_size=0.3, random_state=42).
  3. Build two separate pipelines, each with:
    • StandardScaler() for feature scaling.
    • Either Ridge(alpha=1.0) or Lasso(alpha=0.01, random_state=42) for regression.
  4. Fit both models, evaluate their R² scores on the test set, and print them.
  5. Print the L2 (Ridge) and L1 (Lasso) coefficient norms to compare regularization effects.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 4
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Can you explain that in more detail?

What are the main benefits or drawbacks?

Can you give me an example?

close

Awesome!

Completion rate improved to 8.33

bookChallenge: Regularized Regression Workflow

Svep för att visa menyn

Uppgift

Swipe to start coding

In this challenge, you’ll build and compare Ridge and Lasso regression models using a clean machine learning workflow.

Your goal is to:

  1. Load the Diabetes dataset from scikit-learn.
  2. Split it into training and test sets (test_size=0.3, random_state=42).
  3. Build two separate pipelines, each with:
    • StandardScaler() for feature scaling.
    • Either Ridge(alpha=1.0) or Lasso(alpha=0.01, random_state=42) for regression.
  4. Fit both models, evaluate their R² scores on the test set, and print them.
  5. Print the L2 (Ridge) and L1 (Lasso) coefficient norms to compare regularization effects.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 4
single

single

some-alt