Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Fit a Spring's Oscillation Data | Data Analysis and Visualization in Physics
Python for Physics Students

bookChallenge: Fit a Spring's Oscillation Data

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Uppgift

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Fit a Spring's Oscillation Data

Svep för att visa menyn

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Uppgift

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

some-alt