Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Bag of Words | Basic Text Models
Introduction to NLP

Svep för att visa menyn

book
Challenge: Bag of Words

Uppgift

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'graphic design' bigram in a BoW model. To do this:

  1. Import the CountVectorizer class to create a BoW model.
  2. Instantiate the CountVectorizer class as count_vectorizer, configuring it for a frequency-based model that includes both unigrams and bigrams.
  3. Use the appropriate method of count_vectorizer to generate a BoW matrix from the 'Document' column in the corpus and store the result in bow_matrix.
  4. Convert bow_matrix to a dense array and create a DataFrame from it, setting the unique features (unigrams and bigrams) as its columns. Store the result in the bow_df variable.
  5. Display the vector for 'graphic design' bigram as an array.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 5
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

Awesome!

Completion rate improved to 3.45

book
Challenge: Bag of Words

Uppgift

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'graphic design' bigram in a BoW model. To do this:

  1. Import the CountVectorizer class to create a BoW model.
  2. Instantiate the CountVectorizer class as count_vectorizer, configuring it for a frequency-based model that includes both unigrams and bigrams.
  3. Use the appropriate method of count_vectorizer to generate a BoW matrix from the 'Document' column in the corpus and store the result in bow_matrix.
  4. Convert bow_matrix to a dense array and create a DataFrame from it, setting the unique features (unigrams and bigrams) as its columns. Store the result in the bow_df variable.
  5. Display the vector for 'graphic design' bigram as an array.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

close

Awesome!

Completion rate improved to 3.45

Svep för att visa menyn

some-alt