Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Building Pipelines with scikit-learn | Orchestrating ML Pipelines
MLOps for Machine Learning Engineers

bookBuilding Pipelines with scikit-learn

When you build machine learning solutions, you often repeat the same steps: data preprocessing, feature engineering, model training, and evaluation. Writing these steps separately can lead to code duplication and make it hard to reproduce results. scikit-learn provides the Pipeline class, which lets you chain preprocessing and modeling steps together into a single, streamlined workflow. This approach makes your code cleaner, more maintainable, and easier to reproduce.

Note
Definition

A pipeline standardizes the ML workflow and reduces code duplication.

12345678910111213141516171819202122232425262728
import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline # Load sample data iris = load_iris() X = pd.DataFrame(iris.data, columns=iris.feature_names) y = iris.target # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) # Create a pipeline with preprocessing and modeling steps pipeline = Pipeline([ ("scaler", StandardScaler()), # Step 1: Standardize features ("classifier", LogisticRegression()) # Step 2: Train classifier ]) # Fit the pipeline on training data pipeline.fit(X_train, y_train) # Predict on test data predictions = pipeline.predict(X_test) print("Pipeline accuracy:", pipeline.score(X_test, y_test))
copy
question mark

What is a primary benefit of using the scikit-learn Pipeline class when building machine learning workflows?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 1

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Awesome!

Completion rate improved to 6.25

bookBuilding Pipelines with scikit-learn

Svep för att visa menyn

When you build machine learning solutions, you often repeat the same steps: data preprocessing, feature engineering, model training, and evaluation. Writing these steps separately can lead to code duplication and make it hard to reproduce results. scikit-learn provides the Pipeline class, which lets you chain preprocessing and modeling steps together into a single, streamlined workflow. This approach makes your code cleaner, more maintainable, and easier to reproduce.

Note
Definition

A pipeline standardizes the ML workflow and reduces code duplication.

12345678910111213141516171819202122232425262728
import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline # Load sample data iris = load_iris() X = pd.DataFrame(iris.data, columns=iris.feature_names) y = iris.target # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) # Create a pipeline with preprocessing and modeling steps pipeline = Pipeline([ ("scaler", StandardScaler()), # Step 1: Standardize features ("classifier", LogisticRegression()) # Step 2: Train classifier ]) # Fit the pipeline on training data pipeline.fit(X_train, y_train) # Predict on test data predictions = pipeline.predict(X_test) print("Pipeline accuracy:", pipeline.score(X_test, y_test))
copy
question mark

What is a primary benefit of using the scikit-learn Pipeline class when building machine learning workflows?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 1
some-alt