Challenge 1
Uppgift
Swipe to start coding
In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.
- Read the dataset
'adult-census.csv' - Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the
np.nanobject - Remove rows with missing values
- Let's start with processing categorical data - columns
'workclass','sex'Use a one-hot encoding method to encode them - For numeric data (
'age','hours-per-week'), you will need to scale the data - Print processed data
Lösning
Var allt tydligt?
Tack för dina kommentarer!
Avsnitt 6. Kapitel 1
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Suggested prompts:
Sammanfatta detta kapitel
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 3.33
Challenge 1
Svep för att visa menyn
Uppgift
Swipe to start coding
In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.
- Read the dataset
'adult-census.csv' - Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the
np.nanobject - Remove rows with missing values
- Let's start with processing categorical data - columns
'workclass','sex'Use a one-hot encoding method to encode them - For numeric data (
'age','hours-per-week'), you will need to scale the data - Print processed data
Lösning
Var allt tydligt?
Tack för dina kommentarer!
Avsnitt 6. Kapitel 1
single