Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Data Type Conversion | Time Series Data Processing
Data Preprocessing
course content

Kursinnehåll

Data Preprocessing

Data Preprocessing

1. Brief Introduction
2. Processing Quantitative Data
3. Processing Categorical Data
4. Time Series Data Processing
5. Feature Engineering
6. Moving on to Tasks

book
Data Type Conversion

Data type conversion in time series data processing is the process of converting time series data from one data type to another. Why do we need to use that? In time series data processing, this can be useful when you want to change your data format to make it easier to work with or when you want to perform calculations that require a different data type.
For example, you might convert a string representation of a date into a datetime object so that you can perform calculations on it.

Let's look at an example of converting date data from string format to datetime format:

12345678910111213
import pandas as pd # Create simple dataset with date information in string format dataset = pd.DataFrame({'PatientID': [1, 2, 3], 'Name': ['John', 'Sarah', 'Michael'], 'AdmissionDate': ['2022-03-15', '2021-11-10', '2022-02-28']}) # Convert 'AdmissionDate' column from string to datetime format dataset['AdmissionDate'] = pd.to_datetime(dataset['AdmissionDate'], format='%Y-%m-%d') # Print the converted data print('Converted types:') print(dataset.dtypes)
copy

You can change the format of the date entry template with the format argument.

We can consider different date patterns:

  • '15 Jul 2009' - '%d %m %Y';
  • '1-Feb-15' - '%d-%m-%Y';
  • '12/08/2019' - '%d/%m/%Y'.

Also, take into account that when we talk about processing time-series data, this means that we will work not only with dates but with all other data types (numeric, categorical, etc.).

Uppgift

Swipe to start coding

Read the 'sales.csv' dataset and convert the 'Date' column to the datetime data type.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 1
toggle bottom row

book
Data Type Conversion

Data type conversion in time series data processing is the process of converting time series data from one data type to another. Why do we need to use that? In time series data processing, this can be useful when you want to change your data format to make it easier to work with or when you want to perform calculations that require a different data type.
For example, you might convert a string representation of a date into a datetime object so that you can perform calculations on it.

Let's look at an example of converting date data from string format to datetime format:

12345678910111213
import pandas as pd # Create simple dataset with date information in string format dataset = pd.DataFrame({'PatientID': [1, 2, 3], 'Name': ['John', 'Sarah', 'Michael'], 'AdmissionDate': ['2022-03-15', '2021-11-10', '2022-02-28']}) # Convert 'AdmissionDate' column from string to datetime format dataset['AdmissionDate'] = pd.to_datetime(dataset['AdmissionDate'], format='%Y-%m-%d') # Print the converted data print('Converted types:') print(dataset.dtypes)
copy

You can change the format of the date entry template with the format argument.

We can consider different date patterns:

  • '15 Jul 2009' - '%d %m %Y';
  • '1-Feb-15' - '%d-%m-%Y';
  • '12/08/2019' - '%d/%m/%Y'.

Also, take into account that when we talk about processing time-series data, this means that we will work not only with dates but with all other data types (numeric, categorical, etc.).

Uppgift

Swipe to start coding

Read the 'sales.csv' dataset and convert the 'Date' column to the datetime data type.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 1
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt