Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Stacking Model | Stacking and Voting Ensembles
Ensemble Learning Techniques with Python

bookChallenge: Stacking Model

Uppgift

Swipe to start coding

In this challenge, you'll build a Stacking Classifier that combines different base models to improve predictive performance.

Your task:

  1. Load the Breast Cancer dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the dataset into training and testing sets (test_size=0.3, random_state=42).
  3. Create a stacking ensemble with:
    • Base estimators:
      • Decision Tree (DecisionTreeClassifier(max_depth=3, random_state=42))
      • Support Vector Classifier (SVC(probability=True, random_state=42))
    • Final estimator:
      • Logistic Regression (LogisticRegression(random_state=42))
  4. Train your model on the training data.
  5. Evaluate the model on the test data using accuracy score.
  6. Print the mode's accuracy.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 3
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Stacking Model

Svep för att visa menyn

Uppgift

Swipe to start coding

In this challenge, you'll build a Stacking Classifier that combines different base models to improve predictive performance.

Your task:

  1. Load the Breast Cancer dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the dataset into training and testing sets (test_size=0.3, random_state=42).
  3. Create a stacking ensemble with:
    • Base estimators:
      • Decision Tree (DecisionTreeClassifier(max_depth=3, random_state=42))
      • Support Vector Classifier (SVC(probability=True, random_state=42))
    • Final estimator:
      • Logistic Regression (LogisticRegression(random_state=42))
  4. Train your model on the training data.
  5. Evaluate the model on the test data using accuracy score.
  6. Print the mode's accuracy.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 3
single

single

some-alt