Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Solving Task Using Bagging Classifier | Commonly Used Bagging Models
Ensemble Learning
course content

Kursinnehåll

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

book
Challenge: Solving Task Using Bagging Classifier

Uppgift

Swipe to start coding

The load_breast_cancer dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).

Your task is to solve the classification problem using BaggingClassifier on load_breast_cancer dataset:

  1. Create an instance of BaggingClassifier class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to 10.
  2. Fit the ensemble model.
  3. Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 2
toggle bottom row

book
Challenge: Solving Task Using Bagging Classifier

Uppgift

Swipe to start coding

The load_breast_cancer dataset is a built-in dataset provided by scikit-learn. It is commonly used for binary classification tasks, particularly in the context of breast cancer diagnosis. This dataset contains features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. The aim is to predict whether a given mass is malignant (cancerous) or benign (non-cancerous).

Your task is to solve the classification problem using BaggingClassifier on load_breast_cancer dataset:

  1. Create an instance of BaggingClassifier class: specify base SVC (Support Vector Classifier) model and set the number of base estimators equal to 10.
  2. Fit the ensemble model.
  3. Get the final result using soft voting technique: for each sample in test dataset get the probability matrix and find the class with maximum probability.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 2
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt