Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge 3: Pipelines | Scikit-learn
Data Science Interview Challenge
course content

Kursinnehåll

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 3: Pipelines

Pipelines play a crucial role in streamlining machine learning workflows, ensuring the coherent and efficient transition of data from one processing stage to another. Essentially, a pipeline bundles together a sequence of data processing steps and modeling into a single, unified structure. The primary advantage of using pipelines is the minimization of common workflow errors, such as data leakage when standardizing or normalizing data.

Uppgift

Swipe to start coding

Apply data scaling to the wine dataset, and then use the KMeans algorithm for clustering wines based on their chemical properties.

  1. Apply data standard scaling to the features of the wine dataset.
  2. Use the KMeans algorithm to cluster wines based on their chemical properties. You need 3 clusters.
  3. Apply the pipeline to the data

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 7. Kapitel 3
toggle bottom row

book
Challenge 3: Pipelines

Pipelines play a crucial role in streamlining machine learning workflows, ensuring the coherent and efficient transition of data from one processing stage to another. Essentially, a pipeline bundles together a sequence of data processing steps and modeling into a single, unified structure. The primary advantage of using pipelines is the minimization of common workflow errors, such as data leakage when standardizing or normalizing data.

Uppgift

Swipe to start coding

Apply data scaling to the wine dataset, and then use the KMeans algorithm for clustering wines based on their chemical properties.

  1. Apply data standard scaling to the features of the wine dataset.
  2. Use the KMeans algorithm to cluster wines based on their chemical properties. You need 3 clusters.
  3. Apply the pipeline to the data

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 7. Kapitel 3
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt