Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge 2: Bayes' Theorem | Statistics
Data Science Interview Challenge
course content

Kursinnehåll

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 2: Bayes' Theorem

In the world of probability and statistics, Bayesian thinking offers a framework for understanding the probability of an event based on prior knowledge. It contrasts with the frequentist approach, which determines probabilities based on the long-run frequencies of events. Bayes' theorem is a fundamental tool within this Bayesian framework, connecting prior probabilities and observed data.

Uppgift

Swipe to start coding

Imagine you are a data scientist working for a medical diagnostics company. Your company has developed a new test for a rare disease. The prevalence of this disease in the general population is 1%. The test has a 99% true positive rate (sensitivity) and a 98% true negative rate (specificity).

Your task is to compute the probability that a person who tests positive actually has the disease.

Given:

  • P(Disease) = Probability of having the disease = 0.01
  • P(Positive|Disease) = Probability of testing positive given that you have the disease = 0.99
  • P(Negative|No\ Disease) = Probability of testing negative given that you don't have the disease = 0.98

Using Bayes' theorem:

P(Disease|Positive) = P(Positive|Disease) * P(Disease) / P(Positive)

Where P(Positive) can be found using the law of total probability:

P(Positive) = P(Positive|Disease) * P(Disease) + P(Positive|No Disease) * P(No Disease)

Compute P(Disease|Positive), the probability that a person who tests positive actually has the disease.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 6. Kapitel 2
toggle bottom row

book
Challenge 2: Bayes' Theorem

In the world of probability and statistics, Bayesian thinking offers a framework for understanding the probability of an event based on prior knowledge. It contrasts with the frequentist approach, which determines probabilities based on the long-run frequencies of events. Bayes' theorem is a fundamental tool within this Bayesian framework, connecting prior probabilities and observed data.

Uppgift

Swipe to start coding

Imagine you are a data scientist working for a medical diagnostics company. Your company has developed a new test for a rare disease. The prevalence of this disease in the general population is 1%. The test has a 99% true positive rate (sensitivity) and a 98% true negative rate (specificity).

Your task is to compute the probability that a person who tests positive actually has the disease.

Given:

  • P(Disease) = Probability of having the disease = 0.01
  • P(Positive|Disease) = Probability of testing positive given that you have the disease = 0.99
  • P(Negative|No\ Disease) = Probability of testing negative given that you don't have the disease = 0.98

Using Bayes' theorem:

P(Disease|Positive) = P(Positive|Disease) * P(Disease) / P(Positive)

Where P(Positive) can be found using the law of total probability:

P(Positive) = P(Positive|Disease) * P(Disease) + P(Positive|No Disease) * P(No Disease)

Compute P(Disease|Positive), the probability that a person who tests positive actually has the disease.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 6. Kapitel 2
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt