Standardization
Finally, let's start with the analysis of the PCA mathematical model.
First of all, we start by standardizing the data that the algorithm will work with. By standardization is meant the reduction of all continuous variables to a set where the mean will be equal to 0
.
This is an important step because PCA cannot work properly if there is a variable in the dataset with a range of values 0-20
and 100-10,000
, for example. PCA will start to "ignore" the characteristic with a small spread (0-20
) and it will not be able to affect the result of the algorithm.
The formula for data standardization is very simple. Subtract the mean from the value of the variable and divide the result by the standard deviation:
The scikit-learn
Python library allows us to do this in 1 line:
# Importing libraries
import numpy as np
from sklearn.preprocessing import StandardScaler
# Standardizing
X = np.asarray([[1, 3],[2, 10],[3, 35],[4, 40]], dtype = np.float64)
X_scaled = StandardScaler().fit_transform(X)
Swipe to start coding
Implement standardization of X array using the numpy
functions np.mean()
and np.std()
.
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Awesome!
Completion rate improved to 5.26
Standardization
Svep för att visa menyn
Finally, let's start with the analysis of the PCA mathematical model.
First of all, we start by standardizing the data that the algorithm will work with. By standardization is meant the reduction of all continuous variables to a set where the mean will be equal to 0
.
This is an important step because PCA cannot work properly if there is a variable in the dataset with a range of values 0-20
and 100-10,000
, for example. PCA will start to "ignore" the characteristic with a small spread (0-20
) and it will not be able to affect the result of the algorithm.
The formula for data standardization is very simple. Subtract the mean from the value of the variable and divide the result by the standard deviation:
The scikit-learn
Python library allows us to do this in 1 line:
# Importing libraries
import numpy as np
from sklearn.preprocessing import StandardScaler
# Standardizing
X = np.asarray([[1, 3],[2, 10],[3, 35],[4, 40]], dtype = np.float64)
X_scaled = StandardScaler().fit_transform(X)
Swipe to start coding
Implement standardization of X array using the numpy
functions np.mean()
and np.std()
.
Lösning
Tack för dina kommentarer!
Awesome!
Completion rate improved to 5.26single