Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Exploring Data [2/3] | Reading and Exploring Data
Introduction to pandas [track]

bookExploring Data [2/3]

DataFrame size

To get the dimensionality of DataFrame (i.e., number of rows and columns), use the .shape attribute. It will return a tuple (immutable list-like structure) with 2 values: the first one is the number of rows, the second one is the number of columns.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' dimensionality print(df.shape)
copy

Values' types

Before aggregating and visualizing data, you need to understand are these data have appropriate formats. For example, you may face the situation when prices will be represented in text form - this will make impossible to aggregate it. To get the columns values' types, use the .dtypes attribute.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Columns values' types print(df.dtypes)
copy

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Awesome!

Completion rate improved to 3.33

bookExploring Data [2/3]

Svep för att visa menyn

DataFrame size

To get the dimensionality of DataFrame (i.e., number of rows and columns), use the .shape attribute. It will return a tuple (immutable list-like structure) with 2 values: the first one is the number of rows, the second one is the number of columns.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' dimensionality print(df.shape)
copy

Values' types

Before aggregating and visualizing data, you need to understand are these data have appropriate formats. For example, you may face the situation when prices will be represented in text form - this will make impossible to aggregate it. To get the columns values' types, use the .dtypes attribute.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Columns values' types print(df.dtypes)
copy

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5
some-alt