Problem B. Minimum path
Let's traverse mat
and update values in it: now mat[i][j]
contains the path cost to cell [i, j]
. How to reach that? You can get to the mat[i][j]
from either mat[i-1][j]
or mat[i][j-1]
cell, that also contain the path cost to themselves. Thus, mat[i][j]
can be updated as:
mat[i][j] += min(mat[i-1][j], mat[i][j-1])
,
since you choose the minumum cost path between these two.
Note that some cells can be reached only from left or right, for example, mat[0][j]
(only from mat[0][j-1]
).
So, the goal is to traverse mat
and update its values; after that, return path cost at mat[-1][-1]
.
123456789101112131415161718def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Sammanfatta detta kapitel
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 8.33
Problem B. Minimum path
Svep för att visa menyn
Let's traverse mat
and update values in it: now mat[i][j]
contains the path cost to cell [i, j]
. How to reach that? You can get to the mat[i][j]
from either mat[i-1][j]
or mat[i][j-1]
cell, that also contain the path cost to themselves. Thus, mat[i][j]
can be updated as:
mat[i][j] += min(mat[i-1][j], mat[i][j-1])
,
since you choose the minumum cost path between these two.
Note that some cells can be reached only from left or right, for example, mat[0][j]
(only from mat[0][j-1]
).
So, the goal is to traverse mat
and update its values; after that, return path cost at mat[-1][-1]
.
123456789101112131415161718def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
Tack för dina kommentarer!
Awesome!
Completion rate improved to 8.33single