Problem D. Coin Change
Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N]
is equal to dp[N-C]
. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1]
cents, so number of possible combinations is:
dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]
Note that value of N-c[i]
must be non-negative. Let's use tabulation: for values j
from coin
up to N
: update dp[j]
with adding dp[j-coin]
; repeat for each coin
.
12345678910def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Sammanfatta detta kapitel
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 8.33
Problem D. Coin Change
Svep för att visa menyn
Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N]
is equal to dp[N-C]
. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1]
cents, so number of possible combinations is:
dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]
Note that value of N-c[i]
must be non-negative. Let's use tabulation: for values j
from coin
up to N
: update dp[j]
with adding dp[j-coin]
; repeat for each coin
.
12345678910def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
Tack för dina kommentarer!
Awesome!
Completion rate improved to 8.33single