Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Problem D. Coin Change | Solutions
Dynamic Programming

bookProblem D. Coin Change

Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N] is equal to dp[N-C]. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1] cents, so number of possible combinations is:

dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]

Note that value of N-c[i] must be non-negative. Let's use tabulation: for values j from coin up to N: update dp[j] with adding dp[j-coin]; repeat for each coin.

12345678910
def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
copy

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 4
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Sammanfatta detta kapitel

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 8.33

bookProblem D. Coin Change

Svep för att visa menyn

Imagine you got N cents as combination of some coins, and the last added coin was C. Then, number of possible combinations dp[N] is equal to dp[N-C]. Consider that you can reach N cents by adding either c[0], c[1], ... ,c[m-1] cents, so number of possible combinations is:

dp[N] = dp[N-c[0]] + dp[N-c[1]] + ... + dp[N-c[m-1]]

Note that value of N-c[i] must be non-negative. Let's use tabulation: for values j from coin up to N: update dp[j] with adding dp[j-coin]; repeat for each coin.

12345678910
def coinChange(n , coins): dp = [0 for _ in range(n+1)] dp[0] = 1 for i in range(len(coins)): for j in range(coins[i], n+1): dp[j] += dp[j-coins[i]] return dp[n] print(coinChange(14, [1,2,3,7])) print(coinChange(100, [2,3,5,7,11]))
copy

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

close

Awesome!

Completion rate improved to 8.33
Avsnitt 3. Kapitel 4
single

single

some-alt