Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Overlapping Subproblems Property: Tabulation | Intro to Dynamic Programming
Dynamic Programming

Svep för att visa menyn

book
Overlapping Subproblems Property: Tabulation

Tabulation

"First, solve all necessary subproblems, and then solve the main problem."

Such a principle is called the Bottom-Up approach. We start with trivial subproblems and move from the bottom to the answer. This principle also uses additional tables to store solutions.

Example

Let’s create an array dp to store the solutions. (dp can be a common name for data structure in a class of DP problems).

1234567891011121314
def fib(n): # Array declaration dp = [0]*(n+1) # Base case assignment dp[0] = 0 dp[1] = 1 # Calculating and storing the values for trivial cases for i in range(2 , n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n]
copy

Since we know how to calculate the next element using the previous two elements, let's move from the pre-defined first two elements (base case) and figure out the solution for the 3rd sub-problem. After that, solve the 4th sub-problem using the 2nd and 3rd, and so on, until the last element.

Uppgift

Swipe to start coding

Look at the following task code for the Fibonacci problem.

  1. Fix it to make the solution correct.
  2. Call the function for n = 16 and output the 16th Fibonacci number.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 3
Vi beklagar att något gick fel. Vad hände?

Fråga AI

expand
ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

book
Overlapping Subproblems Property: Tabulation

Tabulation

"First, solve all necessary subproblems, and then solve the main problem."

Such a principle is called the Bottom-Up approach. We start with trivial subproblems and move from the bottom to the answer. This principle also uses additional tables to store solutions.

Example

Let’s create an array dp to store the solutions. (dp can be a common name for data structure in a class of DP problems).

1234567891011121314
def fib(n): # Array declaration dp = [0]*(n+1) # Base case assignment dp[0] = 0 dp[1] = 1 # Calculating and storing the values for trivial cases for i in range(2 , n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n]
copy

Since we know how to calculate the next element using the previous two elements, let's move from the pre-defined first two elements (base case) and figure out the solution for the 3rd sub-problem. After that, solve the 4th sub-problem using the 2nd and 3rd, and so on, until the last element.

Uppgift

Swipe to start coding

Look at the following task code for the Fibonacci problem.

  1. Fix it to make the solution correct.
  2. Call the function for n = 16 and output the 16th Fibonacci number.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 3
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt