Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Multiplication Rule for Independent Events | Statistical Dependence
Probability Theory Update

bookMultiplication Rule for Independent Events

When do we use the multiplication rule?

If we want to calculate the probability of two events occur at the same time (event A and B), we use multiplication rule.

Formula:

P(A and B) = P(A) * P(B)

  • P(A and B) - the probability of event A occurring and event B occurring at the same time,
  • P(A) - the probability of event A occurring,
  • P(B) - the probability of event B occurring.

Task example:

If you are rolling two dice simultaneously, what is the probability that the outcome of the first one is an even number and the second is 5?

The outcomes for the first case (even number): 2, 4, 6.

The outcomes for the second case (number 5): 5.

  1. P(even) = 3/6 = 0.5 = 50%,
  2. P(5) = 1/6 = 0.1667 = 16.67% (ronded to the two decimal points),
  3. P(even and 5) = P(even) * P(5) = 0.0833 = 8.33%

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Ställ mig frågor om detta ämne

Sammanfatta detta kapitel

Visa verkliga exempel

Awesome!

Completion rate improved to 3.7

bookMultiplication Rule for Independent Events

Svep för att visa menyn

When do we use the multiplication rule?

If we want to calculate the probability of two events occur at the same time (event A and B), we use multiplication rule.

Formula:

P(A and B) = P(A) * P(B)

  • P(A and B) - the probability of event A occurring and event B occurring at the same time,
  • P(A) - the probability of event A occurring,
  • P(B) - the probability of event B occurring.

Task example:

If you are rolling two dice simultaneously, what is the probability that the outcome of the first one is an even number and the second is 5?

The outcomes for the first case (even number): 2, 4, 6.

The outcomes for the second case (number 5): 5.

  1. P(even) = 3/6 = 0.5 = 50%,
  2. P(5) = 1/6 = 0.1667 = 16.67% (ronded to the two decimal points),
  3. P(even and 5) = P(even) * P(5) = 0.0833 = 8.33%

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5
some-alt