Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Poisson Distribution 2/3 | Distributions
Probability Theory Update
course content

Kursinnehåll

Probability Theory Update

Probability Theory Update

1. Probability Basics
2. Statistical Dependence
3. Learn Crucial Terms
4. Probability Functions
5. Distributions

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 2
toggle bottom row

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 2
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt