Poisson Distribution 2/3
As you remember, with the .pmf()
function, we can calculate the probability over a range using the addition rule. Look at the example:
Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app.
This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf()
function with two parameters: the first is our desored number of events, and the second is lambda.
Python realization:
We will use .pmf()
function for the Poisson distribution using stats.poisson.pmf()
.
123import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
Example 2/2:
The expected value of sunny days per month is 15
. Calculate the probability that the number of sunny days will equal 16
, 17
, 18
, or 19
.
Python realization:
12345678910import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Sammanfatta detta kapitel
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 3.7
Poisson Distribution 2/3
Svep för att visa menyn
As you remember, with the .pmf()
function, we can calculate the probability over a range using the addition rule. Look at the example:
Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app.
This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf()
function with two parameters: the first is our desored number of events, and the second is lambda.
Python realization:
We will use .pmf()
function for the Poisson distribution using stats.poisson.pmf()
.
123import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
Example 2/2:
The expected value of sunny days per month is 15
. Calculate the probability that the number of sunny days will equal 16
, 17
, 18
, or 19
.
Python realization:
12345678910import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
Tack för dina kommentarer!
Awesome!
Completion rate improved to 3.7single