Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Standard Normal Distribution (Gaussian distribution) 1/2 | Distributions
Probability Theory Update
course content

Kursinnehåll

Probability Theory Update

Probability Theory Update

1. Probability Basics
2. Statistical Dependence
3. Learn Crucial Terms
4. Probability Functions
5. Distributions

book
Standard Normal Distribution (Gaussian distribution) 1/2

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.
  • The standard deviation to 1.
  • The shape is bell-curved.
  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 4
toggle bottom row

book
Standard Normal Distribution (Gaussian distribution) 1/2

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.
  • The standard deviation to 1.
  • The shape is bell-curved.
  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 4
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt