Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Standard Normal Distribution (Gaussian distribution) 1/2 | Distributions
Probability Theory Update

Svep för att visa menyn

book
Standard Normal Distribution (Gaussian distribution) 1/2

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.

  • The standard deviation to 1.

  • The shape is bell-curved.

  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 4
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

Awesome!

Completion rate improved to 3.7

book
Standard Normal Distribution (Gaussian distribution) 1/2

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.

  • The standard deviation to 1.

  • The shape is bell-curved.

  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

close

Awesome!

Completion rate improved to 3.7

Svep för att visa menyn

some-alt