Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära SimpleImputer | The Very First Steps
Introduction to Scikit Learn

Svep för att visa menyn

book
SimpleImputer

We figured out the identification of missing values. Time now to find out what to do with them and how.

SimpleImputer - it is a class from the scikit-learn library, and which is used to work with the missing values.

SimpleImputer(). This method replaces the missing values with more logical values. It has such main arguments, let's look at them.

  • missing_values - a way to represent missing values, by default is NaN, but as we have already said, it can be for example 0.

  • strategy - here we indicate which values we will replace with. It can be mean(default), median, most_frequent and constant.

  • fill_value - a constant value, with which we will replace the missing values, if we chose strategy = constant.

We learn fit() and transform() functions a little more later.

Uppgift

Swipe to start coding

Let's try to fill the empty space in your small dataset.To use SimpleImputer you have to implement the next steps:

  1. Import the class.
  2. Create an instance of the class (imputer object).
  3. Specify the parameters you need, especially: we see that here the missing values are represented by NaN, so replace them with the constant value 15.
  4. Fit the imputer on your data using fit() function
  5. Impute all missing values in you data using transform() function.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 2
Vi beklagar att något gick fel. Vad hände?

Fråga AI

expand
ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

book
SimpleImputer

We figured out the identification of missing values. Time now to find out what to do with them and how.

SimpleImputer - it is a class from the scikit-learn library, and which is used to work with the missing values.

SimpleImputer(). This method replaces the missing values with more logical values. It has such main arguments, let's look at them.

  • missing_values - a way to represent missing values, by default is NaN, but as we have already said, it can be for example 0.

  • strategy - here we indicate which values we will replace with. It can be mean(default), median, most_frequent and constant.

  • fill_value - a constant value, with which we will replace the missing values, if we chose strategy = constant.

We learn fit() and transform() functions a little more later.

Uppgift

Swipe to start coding

Let's try to fill the empty space in your small dataset.To use SimpleImputer you have to implement the next steps:

  1. Import the class.
  2. Create an instance of the class (imputer object).
  3. Specify the parameters you need, especially: we see that here the missing values are represented by NaN, so replace them with the constant value 15.
  4. Fit the imputer on your data using fit() function
  5. Impute all missing values in you data using transform() function.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 2
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt