Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Aggregating in 2-D Arrays | Introduction to NumPy
Introduction to Data Analysis in Python
course content

Kursinnehåll

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Aggregating in 2-D Arrays

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 6

Fråga AI

expand
ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

course content

Kursinnehåll

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Aggregating in 2-D Arrays

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 6
Vi beklagar att något gick fel. Vad hände?
some-alt