Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Figures' Linear Transformations | Linear Algebra
Mathematics for Data Analysis and Modeling
course content

Kursinnehåll

Mathematics for Data Analysis and Modeling

Mathematics for Data Analysis and Modeling

1. Basic Mathematical Concepts and Definitions
2. Linear Algebra
3. Mathematical Analysis

book
Challenge: Figures' Linear Transformations

Uppgift

Swipe to start coding

Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:

  1. Rotation transformation rotates a figure around a specific point or axis.
  2. Scale transformation resizes a figure by changing its size along each axis.

Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:

  1. Сreate rotation matrix that rotates a figure by np.pi / 3 degrees.
  2. Create a scaling matrix with the parameters scale_x = 2 and scale_y = 0.5.
  3. Apply the rotation_matrix to the square.
  4. Apply the scaling_matrix to the result of the previous transformation.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5
toggle bottom row

book
Challenge: Figures' Linear Transformations

Uppgift

Swipe to start coding

Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:

  1. Rotation transformation rotates a figure around a specific point or axis.
  2. Scale transformation resizes a figure by changing its size along each axis.

Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:

  1. Сreate rotation matrix that rotates a figure by np.pi / 3 degrees.
  2. Create a scaling matrix with the parameters scale_x = 2 and scale_y = 0.5.
  3. Apply the rotation_matrix to the square.
  4. Apply the scaling_matrix to the result of the previous transformation.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt