Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Calculating Sum of Geometric Progression | Basic Mathematical Concepts and Definitions
Mathematics for Data Analysis and Modeling
course content

Kursinnehåll

Mathematics for Data Analysis and Modeling

Mathematics for Data Analysis and Modeling

1. Basic Mathematical Concepts and Definitions
2. Linear Algebra
3. Mathematical Analysis

book
Challenge: Calculating Sum of Geometric Progression

In the previous chapter, we discovered a formula to calculate the sum of elements of an arithmetic progression. There is also a formula for the sum of a geometric progression:

Let's discover the following real-life case: consider a scenario where a population of bacteria doubles every hour. The initial population is 100 bacteria. We might want to calculate the total population after a certain number of hours. This scenario can be modeled as a geometric progression, where each term represents the population at a specific hour, and the common ratio r is 2 (since the population doubles each hour).

Uppgift

Swipe to start coding

Calculate the sum of first n elements of geometric progression using both for loop and the formula described above.

  1. Specify the arguments of the formula.
  2. Specify parameters of for loop.

Once you've completed this task, click the button below the code to check your solution.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 4
toggle bottom row

book
Challenge: Calculating Sum of Geometric Progression

In the previous chapter, we discovered a formula to calculate the sum of elements of an arithmetic progression. There is also a formula for the sum of a geometric progression:

Let's discover the following real-life case: consider a scenario where a population of bacteria doubles every hour. The initial population is 100 bacteria. We might want to calculate the total population after a certain number of hours. This scenario can be modeled as a geometric progression, where each term represents the population at a specific hour, and the common ratio r is 2 (since the population doubles each hour).

Uppgift

Swipe to start coding

Calculate the sum of first n elements of geometric progression using both for loop and the formula described above.

  1. Specify the arguments of the formula.
  2. Specify parameters of for loop.

Once you've completed this task, click the button below the code to check your solution.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 4
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt