Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Implementing on Real Dataset | DBSCAN
Cluster Analysis
course content

Kursinnehåll

Cluster Analysis

Cluster Analysis

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Implementing on Real Dataset

You'll use the mall customers dataset, which contains the following columns:

You should also follow these steps before clustering:

  1. Load the data: you'll use pandas to load the CSV file;

  2. Select relevant features: you'll focus on 'Annual Income (k$)' and 'Spending Score (1-100)' columns;

  3. Data scaling (important for DBSCAN): since DBSCAN uses distance calculations, it's crucial to scale features to have similar ranges. You can use StandardScaler for this purpose.

Interpretation

The code creates 5 clusters in this case. It's important to analyze the resulting clusters to gain insights into customer segmentation. For example, you might find clusters representing:

  • High-income, high-spending customers;

  • High-income, low-spending customers;

  • Low-income, high-spending customers;

  • Low-income, low-spending customers;

  • Middle-income, middle-spending customers.

Concluding Remarks

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 5

Fråga AI

expand
ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

course content

Kursinnehåll

Cluster Analysis

Cluster Analysis

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Implementing on Real Dataset

You'll use the mall customers dataset, which contains the following columns:

You should also follow these steps before clustering:

  1. Load the data: you'll use pandas to load the CSV file;

  2. Select relevant features: you'll focus on 'Annual Income (k$)' and 'Spending Score (1-100)' columns;

  3. Data scaling (important for DBSCAN): since DBSCAN uses distance calculations, it's crucial to scale features to have similar ranges. You can use StandardScaler for this purpose.

Interpretation

The code creates 5 clusters in this case. It's important to analyze the resulting clusters to gain insights into customer segmentation. For example, you might find clusters representing:

  • High-income, high-spending customers;

  • High-income, low-spending customers;

  • Low-income, high-spending customers;

  • Low-income, low-spending customers;

  • Middle-income, middle-spending customers.

Concluding Remarks

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 5. Kapitel 5
Vi beklagar att något gick fel. Vad hände?
some-alt