Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Columns Accessors | Data Frames
R Introduction: Part II
course content

Kursinnehåll

R Introduction: Part II

R Introduction: Part II

1. Matrices
2. Data Frames
3. Lists

book
Columns Accessors

Since data frames have names on their columns, you should be able to extract necessary data using them.

There are several ways in R to refer to a particular column using naming. One of them is the same as in vectors and matrices: column name within square brackets (for example, data[, "col_name"]). The second way is unique for data frames - using the dollar $ sign. The syntax is data$col_name (yes, without quotation marks). For example, you can extract the column "Age" from the data frame created in the last chapter.

12345678910
# Data name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") # Creating a data frame test <- data.frame(name, age, gender) # Extracting the name column using two ways test[,"name"] test$name
copy
Uppgift

Swipe to start coding

Let's work with the mtcars dataset. Your tasks are:

  1. Extract the cyl column values using square brackets.
  2. Extract the disp column values using the dollar $ sign.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 3
toggle bottom row

book
Columns Accessors

Since data frames have names on their columns, you should be able to extract necessary data using them.

There are several ways in R to refer to a particular column using naming. One of them is the same as in vectors and matrices: column name within square brackets (for example, data[, "col_name"]). The second way is unique for data frames - using the dollar $ sign. The syntax is data$col_name (yes, without quotation marks). For example, you can extract the column "Age" from the data frame created in the last chapter.

12345678910
# Data name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") # Creating a data frame test <- data.frame(name, age, gender) # Extracting the name column using two ways test[,"name"] test$name
copy
Uppgift

Swipe to start coding

Let's work with the mtcars dataset. Your tasks are:

  1. Extract the cyl column values using square brackets.
  2. Extract the disp column values using the dollar $ sign.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 3
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt