Setting Parameters: Affinity
Well, that was not the result we were looking for. Can we improve it? Can we make the clustering algorithm learn to differ such structures?
The answer is yes - we need to set some parameters within the SpectralClustering
function. The parameter we should change is affinity
. This parameter defines how should affinity matrix be built (the math explanation of this is outside the scope of this course). By default, the parameter's value is 'rbf'
. If we want to differ the clusters with such a structure as in the previous chapter, we should consider the 'nearest_neighbors'
value of the parameter.
Swipe to start coding
- Import
SpectralClustering
function fromsklearn.cluster
. - Create a
SpectralClustering
model object with 4 clusters and set theaffinity
parameter to'nearest_neighbors'
. - Fit the
data
to themodel
and predict the labels. Save predicted labels as the'prediction'
column ofdata
. - Build the
seaborn
scatter plot with'x'
column ofdata
on the x-axis,'y'
column ofdata
on the y-axis for each value of'prediction'
. Then, display the plot.
Lösning
Tack för dina kommentarer!
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Sammanfatta detta kapitel
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 3.57
Setting Parameters: Affinity
Svep för att visa menyn
Well, that was not the result we were looking for. Can we improve it? Can we make the clustering algorithm learn to differ such structures?
The answer is yes - we need to set some parameters within the SpectralClustering
function. The parameter we should change is affinity
. This parameter defines how should affinity matrix be built (the math explanation of this is outside the scope of this course). By default, the parameter's value is 'rbf'
. If we want to differ the clusters with such a structure as in the previous chapter, we should consider the 'nearest_neighbors'
value of the parameter.
Swipe to start coding
- Import
SpectralClustering
function fromsklearn.cluster
. - Create a
SpectralClustering
model object with 4 clusters and set theaffinity
parameter to'nearest_neighbors'
. - Fit the
data
to themodel
and predict the labels. Save predicted labels as the'prediction'
column ofdata
. - Build the
seaborn
scatter plot with'x'
column ofdata
on the x-axis,'y'
column ofdata
on the y-axis for each value of'prediction'
. Then, display the plot.
Lösning
Tack för dina kommentarer!
Awesome!
Completion rate improved to 3.57single