Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära How Similar are the Results? | Hierarchical Clustering
Cluster Analysis in Python

Svep för att visa menyn

book
How Similar are the Results?

Well done! Let's look at the last line charts you built in the previous chapter.

As you can see, only the ward linkage could catch the 'downward up to July' trend. Both results are different. But let's find out how different they are using the rand index.

Uppgift

Swipe to start coding

Table

Compute the rand index to compare the results of using complete and ward linkages. Follow the next steps:

  1. Import functions needed:
  • rand_score from sklearn.metrics.
  • AgglomerativeClustering from sklearn.cluster.
  1. Create two models model_complete and model_ward performing a hierarchical clustering with 4 clusters both and 'complete' and 'ward' linkages respectively.
  2. Fit the 3-14 columns of data to models and predict the labels. Save the labels for model_complete within labels_complete and for model_ward within labels_ward.
  3. Compute the rand index using labels_complete and labels_ward.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 8

Fråga AI

expand
ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

book
How Similar are the Results?

Well done! Let's look at the last line charts you built in the previous chapter.

As you can see, only the ward linkage could catch the 'downward up to July' trend. Both results are different. But let's find out how different they are using the rand index.

Uppgift

Swipe to start coding

Table

Compute the rand index to compare the results of using complete and ward linkages. Follow the next steps:

  1. Import functions needed:
  • rand_score from sklearn.metrics.
  • AgglomerativeClustering from sklearn.cluster.
  1. Create two models model_complete and model_ward performing a hierarchical clustering with 4 clusters both and 'complete' and 'ward' linkages respectively.
  2. Fit the 3-14 columns of data to models and predict the labels. Save the labels for model_complete within labels_complete and for model_ward within labels_ward.
  3. Compute the rand index using labels_complete and labels_ward.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 3. Kapitel 8
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt