Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Predict Ozone Levels | Section
Fundamentals of Statistical Analysis with Python: Descriptive and Inferential Methods - 1768563985067

bookChallenge: Predict Ozone Levels

In environmental science, predicting air quality indicators such as ozone levels is crucial for understanding pollution dynamics and informing public health decisions. You will use a simple linear regression model to predict ozone levels based on temperature data, a common approach for exploring how weather conditions relate to air pollution.

Begin by importing the necessary libraries and preparing your data. You have a small dataset of daily temperature and ozone measurements, which allows you to practice building and evaluating a predictive model.

Uppgift

Swipe to start coding

Fit a linear regression model using scikit-learn to predict ozone levels from temperature, using this DataFrame:

  • Use the provided pandas DataFrame with columns temperature and ozone.
  • Fit a linear regression model (LinearRegression) to predict ozone from temperature.
  • Store the fitted model as model.
  • Predict ozone values for the input data and store them in y_pred.
  • Calculate and print the mean squared error (MSE) and R² score of the predictions.
  • Plot a scatter plot of the data and overlay the regression line.

The DataFrame is:

import pandas as pd
df = pd.DataFrame({
    "temperature": [22, 25, 27, 23, 28, 30, 26, 29, 31, 24, 32, 33, 21, 20, 19],
    "ozone": [34, 44, 49, 37, 51, 60, 46, 55, 62, 39, 65, 67, 30, 28, 25]
})

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 16
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

bookChallenge: Predict Ozone Levels

Svep för att visa menyn

In environmental science, predicting air quality indicators such as ozone levels is crucial for understanding pollution dynamics and informing public health decisions. You will use a simple linear regression model to predict ozone levels based on temperature data, a common approach for exploring how weather conditions relate to air pollution.

Begin by importing the necessary libraries and preparing your data. You have a small dataset of daily temperature and ozone measurements, which allows you to practice building and evaluating a predictive model.

Uppgift

Swipe to start coding

Fit a linear regression model using scikit-learn to predict ozone levels from temperature, using this DataFrame:

  • Use the provided pandas DataFrame with columns temperature and ozone.
  • Fit a linear regression model (LinearRegression) to predict ozone from temperature.
  • Store the fitted model as model.
  • Predict ozone values for the input data and store them in y_pred.
  • Calculate and print the mean squared error (MSE) and R² score of the predictions.
  • Plot a scatter plot of the data and overlay the regression line.

The DataFrame is:

import pandas as pd
df = pd.DataFrame({
    "temperature": [22, 25, 27, 23, 28, 30, 26, 29, 31, 24, 32, 33, 21, 20, 19],
    "ozone": [34, 44, 49, 37, 51, 60, 46, 55, 62, 39, 65, 67, 30, 28, 25]
})

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 16
single

single

some-alt