Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Unsupervised Metrics | Unsupervised Learning Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Unsupervised Metrics

Tarefa

Swipe to start coding

You will perform a full unsupervised model evaluation pipeline, consisting of anomaly detection, dimensionality reduction, and clustering.

Perform the following steps:

1. Anomaly Detection Evaluation

  • Use the make_classification dataset from scikit-learn with strong class imbalance (weights=[0.95, 0.05]).
  • Train an IsolationForest model to detect anomalies.
  • Compute:
    • Precision.
    • Recall.
    • ROC–AUC.

2. Dimensionality Reduction Evaluation

  • Apply PCA to the dataset (2 components).
  • Compute:
    • Explained Variance Ratio.
    • Reconstruction Error between original and inverse-transformed data.

3. Clustering Evaluation

  • Apply KMeans with n_clusters=3 on the PCA-reduced data.
  • Compute:
    • Inertia.
    • Silhouette Score.
    • Davies–Bouldin Score.
    • Calinski–Harabasz Score.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 5
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Unsupervised Metrics

Deslize para mostrar o menu

Tarefa

Swipe to start coding

You will perform a full unsupervised model evaluation pipeline, consisting of anomaly detection, dimensionality reduction, and clustering.

Perform the following steps:

1. Anomaly Detection Evaluation

  • Use the make_classification dataset from scikit-learn with strong class imbalance (weights=[0.95, 0.05]).
  • Train an IsolationForest model to detect anomalies.
  • Compute:
    • Precision.
    • Recall.
    • ROC–AUC.

2. Dimensionality Reduction Evaluation

  • Apply PCA to the dataset (2 components).
  • Compute:
    • Explained Variance Ratio.
    • Reconstruction Error between original and inverse-transformed data.

3. Clustering Evaluation

  • Apply KMeans with n_clusters=3 on the PCA-reduced data.
  • Compute:
    • Inertia.
    • Silhouette Score.
    • Davies–Bouldin Score.
    • Calinski–Harabasz Score.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 5
single

single

some-alt