Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Classification Metrics | Classification Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Classification Metrics

Tarefa

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 7
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Classification Metrics

Deslize para mostrar o menu

Tarefa

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 7
single

single

some-alt