Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge | Multivariate Linear Regression
Explore the Linear Regression Using Python
course content

Conteúdo do Curso

Explore the Linear Regression Using Python

Explore the Linear Regression Using Python

1. What is the Linear Regression?
2. Correlation
3. Building and Training Model
4. Metrics to Evaluate the Model
5. Multivariate Linear Regression

bookChallenge

Tarefa

Let’s indicate the number of nonflavanoid phenols based on the number of flavanoids, total phenols and evaluate our model.

Your plan:

  1. [Line #24] Split the data 70-30 (70% of the data is for training and 30% is for testing) and insert 1 as a random parameter.
  2. [Line #25-26] Initialize and fit the model (assign the model to the variable model2).
  3. [Line #30-31] Calculate the MAE and assign the result to the variable MAE.
  4. [Line #34-35] Calculate the R-squared and assign the result to the variable r_squared.
  5. [Line #38] Print the intercept, the MAE and the R-squared in this order and round each value to second digit.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
toggle bottom row

bookChallenge

Tarefa

Let’s indicate the number of nonflavanoid phenols based on the number of flavanoids, total phenols and evaluate our model.

Your plan:

  1. [Line #24] Split the data 70-30 (70% of the data is for training and 30% is for testing) and insert 1 as a random parameter.
  2. [Line #25-26] Initialize and fit the model (assign the model to the variable model2).
  3. [Line #30-31] Calculate the MAE and assign the result to the variable MAE.
  4. [Line #34-35] Calculate the R-squared and assign the result to the variable r_squared.
  5. [Line #38] Print the intercept, the MAE and the R-squared in this order and round each value to second digit.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
toggle bottom row

bookChallenge

Tarefa

Let’s indicate the number of nonflavanoid phenols based on the number of flavanoids, total phenols and evaluate our model.

Your plan:

  1. [Line #24] Split the data 70-30 (70% of the data is for training and 30% is for testing) and insert 1 as a random parameter.
  2. [Line #25-26] Initialize and fit the model (assign the model to the variable model2).
  3. [Line #30-31] Calculate the MAE and assign the result to the variable MAE.
  4. [Line #34-35] Calculate the R-squared and assign the result to the variable r_squared.
  5. [Line #38] Print the intercept, the MAE and the R-squared in this order and round each value to second digit.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Tarefa

Let’s indicate the number of nonflavanoid phenols based on the number of flavanoids, total phenols and evaluate our model.

Your plan:

  1. [Line #24] Split the data 70-30 (70% of the data is for training and 30% is for testing) and insert 1 as a random parameter.
  2. [Line #25-26] Initialize and fit the model (assign the model to the variable model2).
  3. [Line #30-31] Calculate the MAE and assign the result to the variable MAE.
  4. [Line #34-35] Calculate the R-squared and assign the result to the variable r_squared.
  5. [Line #38] Print the intercept, the MAE and the R-squared in this order and round each value to second digit.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 5. Capítulo 3
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
some-alt