Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Feature Selection Pipeline | Feature Selection Strategies
Feature Selection and Regularization Techniques

bookChallenge: Feature Selection Pipeline

Tarefa

Swipe to start coding

You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.

Follow these steps:

  1. Load the dataset using load_diabetes().
  2. Split it into train/test sets (test_size=0.3, random_state=42).
  3. Build a pipeline with:
    • StandardScaler().
    • SelectFromModel(Lasso(alpha=0.01, random_state=42)) for automatic feature selection.
    • LinearRegression() as the final model.
  4. Fit the pipeline and evaluate it using R² score on the test set.
  5. Print:
    • The R² score (rounded to 3 decimals).
    • The number of features selected.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 4
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

Can you explain that in more detail?

What are the main benefits or drawbacks?

Can you provide an example?

close

Awesome!

Completion rate improved to 8.33

bookChallenge: Feature Selection Pipeline

Deslize para mostrar o menu

Tarefa

Swipe to start coding

You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.

Follow these steps:

  1. Load the dataset using load_diabetes().
  2. Split it into train/test sets (test_size=0.3, random_state=42).
  3. Build a pipeline with:
    • StandardScaler().
    • SelectFromModel(Lasso(alpha=0.01, random_state=42)) for automatic feature selection.
    • LinearRegression() as the final model.
  4. Fit the pipeline and evaluate it using R² score on the test set.
  5. Print:
    • The R² score (rounded to 3 decimals).
    • The number of features selected.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 4
single

single

some-alt