Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Histogram Equalization | Image Processing with OpenCV
Computer Vision Essentials

Deslize para mostrar o menu

book
Histogram Equalization

Simple Histogram Equalization

Histogram equalization is a technique used to enhance the global contrast of an image. It works by redistributing the intensity values so that they span the entire possible range (0 to 255 in 8-bit images). This is especially useful for images that are too dark or too bright, as it makes features more visible by equalizing the histogram of pixel intensities.

  • cv2.equalizeHist(image)

    • image: input grayscale image (must be single-channel);

    • Returns a new image with enhanced contrast by stretching and flattening the histogram.

Adaptive Histogram Equalization (CLAHE)

CLAHE (Contrast Limited Adaptive Histogram Equalization) is an advanced version of histogram equalization that operates on small regions (tiles) of the image rather than the whole image. It enhances local contrast and avoids over-amplifying noise by limiting the histogram contrast within each tile.

  • cv2.createCLAHE(...) creates a CLAHE object with:

    • clipLimit: threshold for contrast limiting (higher value = more contrast);

    • tileGridSize: size of the grid for dividing the image into tiles (e.g., 8x8).

  • clahe.apply(image) applies CLAHE to the input image.

Tarefa

Swipe to start coding

You are given an image variable:

  • Apply simple histogram equalization and store in equalized;
  • Define CLAHE class object in clahe variable;
  • Apply CLAHE histogram equalization and store in clahe_equalized (parameters recomendation: clipLimit=2.0 and tileGridSize=(8, 8)).

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 5

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
Histogram Equalization

Simple Histogram Equalization

Histogram equalization is a technique used to enhance the global contrast of an image. It works by redistributing the intensity values so that they span the entire possible range (0 to 255 in 8-bit images). This is especially useful for images that are too dark or too bright, as it makes features more visible by equalizing the histogram of pixel intensities.

  • cv2.equalizeHist(image)

    • image: input grayscale image (must be single-channel);

    • Returns a new image with enhanced contrast by stretching and flattening the histogram.

Adaptive Histogram Equalization (CLAHE)

CLAHE (Contrast Limited Adaptive Histogram Equalization) is an advanced version of histogram equalization that operates on small regions (tiles) of the image rather than the whole image. It enhances local contrast and avoids over-amplifying noise by limiting the histogram contrast within each tile.

  • cv2.createCLAHE(...) creates a CLAHE object with:

    • clipLimit: threshold for contrast limiting (higher value = more contrast);

    • tileGridSize: size of the grid for dividing the image into tiles (e.g., 8x8).

  • clahe.apply(image) applies CLAHE to the input image.

Tarefa

Swipe to start coding

You are given an image variable:

  • Apply simple histogram equalization and store in equalized;
  • Define CLAHE class object in clahe variable;
  • Apply CLAHE histogram equalization and store in clahe_equalized (parameters recomendation: clipLimit=2.0 and tileGridSize=(8, 8)).

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 5
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt