Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Bag of Words | Basic Text Models
Introduction to NLP

Deslize para mostrar o menu

book
Challenge: Bag of Words

Tarefa

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'graphic design' bigram in a BoW model. To do this:

  1. Import the CountVectorizer class to create a BoW model.
  2. Instantiate the CountVectorizer class as count_vectorizer, configuring it for a frequency-based model that includes both unigrams and bigrams.
  3. Use the appropriate method of count_vectorizer to generate a BoW matrix from the 'Document' column in the corpus and store the result in bow_matrix.
  4. Convert bow_matrix to a dense array and create a DataFrame from it, setting the unique features (unigrams and bigrams) as its columns. Store the result in the bow_df variable.
  5. Display the vector for 'graphic design' bigram as an array.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 5
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

close

Awesome!

Completion rate improved to 3.45

book
Challenge: Bag of Words

Tarefa

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'graphic design' bigram in a BoW model. To do this:

  1. Import the CountVectorizer class to create a BoW model.
  2. Instantiate the CountVectorizer class as count_vectorizer, configuring it for a frequency-based model that includes both unigrams and bigrams.
  3. Use the appropriate method of count_vectorizer to generate a BoW matrix from the 'Document' column in the corpus and store the result in bow_matrix.
  4. Convert bow_matrix to a dense array and create a DataFrame from it, setting the unique features (unigrams and bigrams) as its columns. Store the result in the bow_df variable.
  5. Display the vector for 'graphic design' bigram as an array.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

close

Awesome!

Completion rate improved to 3.45

Deslize para mostrar o menu

some-alt