Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Comparing Models | Comparing Models
Classification with Python
course content

Conteúdo do Curso

Classification with Python

Classification with Python

1. k-NN Classifier
2. Logistic Regression
3. Decision Tree
4. Random Forest
5. Comparing Models

book
Challenge: Comparing Models

Now you'll compare the models we've covered using a single dataset — the breast cancer dataset. The target variable is the 'diagnosis' column, where 1 represents malignant and 0 represents benign cases.

You will apply GridSearchCV to each model to find the best parameters. In this task, you'll use recall as the scoring metric because minimizing false negatives is crucial. To have GridSearchCV select the best parameters based on recall, set scoring='recall'.

Tarefa

Swipe to start coding

The task is to build all the models we learned and to print the best parameters along with the best recall score of each model. You will need to fill in the parameter names in the param_grid dictionaries.

  1. For the k-NN model find the best n_neighbors value out of [3, 5, 7, 12].
  2. For the Logistic Regression run through [0.1, 1, 10] values of C.
  3. For a Decision Tree, we want to configure two parameters, max_depth and min_samples_leaf. Run through values [2, 4, 6, 10] for max_depth and [1, 2, 4, 7] for min_samples_leaf.
  4. For a Random Forest, find the best max_depth(maximum depth of each Tree) value out of [2, 4, 6] and the best number of trees(n_estimators). Try values [20, 50, 100] for the number of trees.

Solução

Note

The code takes some time to run(less than a minute).

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
toggle bottom row

book
Challenge: Comparing Models

Now you'll compare the models we've covered using a single dataset — the breast cancer dataset. The target variable is the 'diagnosis' column, where 1 represents malignant and 0 represents benign cases.

You will apply GridSearchCV to each model to find the best parameters. In this task, you'll use recall as the scoring metric because minimizing false negatives is crucial. To have GridSearchCV select the best parameters based on recall, set scoring='recall'.

Tarefa

Swipe to start coding

The task is to build all the models we learned and to print the best parameters along with the best recall score of each model. You will need to fill in the parameter names in the param_grid dictionaries.

  1. For the k-NN model find the best n_neighbors value out of [3, 5, 7, 12].
  2. For the Logistic Regression run through [0.1, 1, 10] values of C.
  3. For a Decision Tree, we want to configure two parameters, max_depth and min_samples_leaf. Run through values [2, 4, 6, 10] for max_depth and [1, 2, 4, 7] for min_samples_leaf.
  4. For a Random Forest, find the best max_depth(maximum depth of each Tree) value out of [2, 4, 6] and the best number of trees(n_estimators). Try values [20, 50, 100] for the number of trees.

Solução

Note

The code takes some time to run(less than a minute).

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt