Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Comparing Models | Comparing Models
Classification with Python

Deslize para mostrar o menu

book
Challenge: Comparing Models

Now you'll compare the models we've covered using a single dataset — the breast cancer dataset. The target variable is the 'diagnosis' column, where 1 represents malignant and 0 represents benign cases.

You will apply GridSearchCV to each model to find the best parameters. In this task, you'll use recall as the scoring metric because minimizing false negatives is crucial. To have GridSearchCV select the best parameters based on recall, set scoring='recall'.

Tarefa

Swipe to start coding

You are given a breast cancer dataset stored as a DataFrame in the df variable.

  • Create a dictionary for GridSearchCV to iterate through [3, 5, 7, 12] values for n_neighbors and store it in the knn_params variable.
  • Create a dictionary for GridSearchCV to iterate through [0.1, 1, 10] values for C and store it in the lr_params variable.
  • Create a dictionary for GridSearchCV to iterate through [2, 4, 6, 10] values for max_depth and [1, 2, 4, 7] values for min_samples_leaf, and store it in the dt_params variable.
  • Create a dictionary for GridSearchCV to iterate through [2, 4, 6] values for max_depth and [20, 50, 100] values for n_estimators, and store it in the rf_params variable.
  • Initialize and train a GridSearchCV object for each of the model, and store the trained models in the respective variables: knn_grid, lr_grid, dt_grid, and rf_grid.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
Sentimos muito que algo saiu errado. O que aconteceu?

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
Challenge: Comparing Models

Now you'll compare the models we've covered using a single dataset — the breast cancer dataset. The target variable is the 'diagnosis' column, where 1 represents malignant and 0 represents benign cases.

You will apply GridSearchCV to each model to find the best parameters. In this task, you'll use recall as the scoring metric because minimizing false negatives is crucial. To have GridSearchCV select the best parameters based on recall, set scoring='recall'.

Tarefa

Swipe to start coding

You are given a breast cancer dataset stored as a DataFrame in the df variable.

  • Create a dictionary for GridSearchCV to iterate through [3, 5, 7, 12] values for n_neighbors and store it in the knn_params variable.
  • Create a dictionary for GridSearchCV to iterate through [0.1, 1, 10] values for C and store it in the lr_params variable.
  • Create a dictionary for GridSearchCV to iterate through [2, 4, 6, 10] values for max_depth and [1, 2, 4, 7] values for min_samples_leaf, and store it in the dt_params variable.
  • Create a dictionary for GridSearchCV to iterate through [2, 4, 6] values for max_depth and [20, 50, 100] values for n_estimators, and store it in the rf_params variable.
  • Initialize and train a GridSearchCV object for each of the model, and store the trained models in the respective variables: knn_grid, lr_grid, dt_grid, and rf_grid.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt