Resumo
Os principais tópicos abordados neste curso estão resumidos abaixo. O material de visão geral está disponível para download ao final desta página.
Configuração do TensorFlow
Instalação
pip install tensorflow
Importação
# Import the TensorFlow library with the alias tf
import tensorflow as tf
Tipos de Tensores
Criação Simples de Tensor
# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])
# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])
# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])
Propriedades dos Tensores
- Rank: indica o número de dimensões presentes no tensor. Por exemplo, uma matriz possui rank igual a 2. É possível obter o rank do tensor utilizando o atributo
.ndim
:
print(f'Rank of a tensor: {tensor.ndim}')
- Shape: descreve quantos valores existem em cada dimensão. Uma matriz 2x3 possui shape
(2, 3)
. O comprimento do parâmetro shape corresponde ao rank do tensor (seu número de dimensões). É possível obter o shape do tensor pelo atributo.shape
:
print(f'Shape of a tensor: {tensor.shape}')
- Types: Tensores possuem diversos tipos de dados. Entre os mais comuns estão
float32
,int32
estring
. É possível obter o tipo de dado do tensor pelo atributo.dtype
:
print(f'Data type of a tensor: {tensor.dtype}')
Eixos de Tensores
Aplicações de Tensores
- Table Data
- Sequências de Texto
- Sequências Numéricas
- Processamento de Imagens
- Processamento de Vídeo
Lotes
Métodos de Criação de Tensores
# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])
# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])
# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))
# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))
# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)
# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)
# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)
# Tensor of shape (2, 2) with random values normally distributed
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)
# Tensor of shape (2, 2) with random values uniformly distributed
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)
Conversões
- NumPy para Tensor
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])
# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
- Pandas para Tensor
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
- Tensor Constante para Tensor Variável
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)
# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))
Tipos de Dados
# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)
# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)
Aritmética
- Adição
c1 = tf.add(a, b)
c2 = a + b
# Changes the object inplace without creating a new one
a.assign_add(b)
- Subtração
c1 = tf.subtract(a, b)
c2 = a - b
# Inplace substraction
a.assign_sub(b)
- Multiplicação elemento a elemento
c1 = tf.multiply(a, b)
c2 = a * b
- Divisão
c1 = tf.divide(a, b)
c2 = a / b
Broadcasting
Álgebra Linear
- Multiplicação de Matrizes
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
- Inversão de Matriz
inverse_mat = tf.linalg.inv(matrix)
- Transposição
transposed = tf.transpose(matrix)
- Produto Escalar
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)
Redimensionar
# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])
# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))
Fatiamento
# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))
# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))
Modificação com Fatiamento
# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Change the entire first row
tensor[0, :].assign([0, 0, 0])
# Modify the second and the third columns
tensor[:, 1:3].assign(tf.fill((3,2), 1))
Concatenação
# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])
# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)
# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)
Operações de Redução
# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)
# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)
# Determine the maximum value
max_val = tf.reduce_max(tensor)
# Find the minimum value
min_val = tf.reduce_min(tensor)
Fita de Gradiente
# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)
# Start recording the operations
with tf.GradientTape() as tape:
# Define the calculations
y = tf.reduce_sum(x * x + 2 * z)
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])
print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")
@tf.function
@tf.function
def compute_gradient_conditional(x):
with tf.GradientTape() as tape:
if tf.reduce_sum(x) > 0:
y = x * x
else:
y = x * x * x
return tape.gradient(y, x)
x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
Tudo estava claro?
Obrigado pelo seu feedback!
Seção 2. Capítulo 5
Pergunte à IA
Pergunte à IA
Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo
Suggested prompts:
Can you explain what tensors are in simple terms?
What are some common operations I can perform on tensors in TensorFlow?
How do I use Gradient Tape for automatic differentiation?
Awesome!
Completion rate improved to 5.56
Resumo
Deslize para mostrar o menu
Os principais tópicos abordados neste curso estão resumidos abaixo. O material de visão geral está disponível para download ao final desta página.
Configuração do TensorFlow
Instalação
pip install tensorflow
Importação
# Import the TensorFlow library with the alias tf
import tensorflow as tf
Tipos de Tensores
Criação Simples de Tensor
# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])
# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])
# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])
Propriedades dos Tensores
- Rank: indica o número de dimensões presentes no tensor. Por exemplo, uma matriz possui rank igual a 2. É possível obter o rank do tensor utilizando o atributo
.ndim
:
print(f'Rank of a tensor: {tensor.ndim}')
- Shape: descreve quantos valores existem em cada dimensão. Uma matriz 2x3 possui shape
(2, 3)
. O comprimento do parâmetro shape corresponde ao rank do tensor (seu número de dimensões). É possível obter o shape do tensor pelo atributo.shape
:
print(f'Shape of a tensor: {tensor.shape}')
- Types: Tensores possuem diversos tipos de dados. Entre os mais comuns estão
float32
,int32
estring
. É possível obter o tipo de dado do tensor pelo atributo.dtype
:
print(f'Data type of a tensor: {tensor.dtype}')
Eixos de Tensores
Aplicações de Tensores
- Table Data
- Sequências de Texto
- Sequências Numéricas
- Processamento de Imagens
- Processamento de Vídeo
Lotes
Métodos de Criação de Tensores
# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])
# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])
# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))
# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))
# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)
# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)
# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)
# Tensor of shape (2, 2) with random values normally distributed
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)
# Tensor of shape (2, 2) with random values uniformly distributed
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)
Conversões
- NumPy para Tensor
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])
# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
- Pandas para Tensor
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
- Tensor Constante para Tensor Variável
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)
# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))
Tipos de Dados
# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)
# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)
Aritmética
- Adição
c1 = tf.add(a, b)
c2 = a + b
# Changes the object inplace without creating a new one
a.assign_add(b)
- Subtração
c1 = tf.subtract(a, b)
c2 = a - b
# Inplace substraction
a.assign_sub(b)
- Multiplicação elemento a elemento
c1 = tf.multiply(a, b)
c2 = a * b
- Divisão
c1 = tf.divide(a, b)
c2 = a / b
Broadcasting
Álgebra Linear
- Multiplicação de Matrizes
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
- Inversão de Matriz
inverse_mat = tf.linalg.inv(matrix)
- Transposição
transposed = tf.transpose(matrix)
- Produto Escalar
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)
Redimensionar
# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])
# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))
Fatiamento
# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))
# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))
Modificação com Fatiamento
# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Change the entire first row
tensor[0, :].assign([0, 0, 0])
# Modify the second and the third columns
tensor[:, 1:3].assign(tf.fill((3,2), 1))
Concatenação
# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])
# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)
# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)
Operações de Redução
# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)
# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)
# Determine the maximum value
max_val = tf.reduce_max(tensor)
# Find the minimum value
min_val = tf.reduce_min(tensor)
Fita de Gradiente
# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)
# Start recording the operations
with tf.GradientTape() as tape:
# Define the calculations
y = tf.reduce_sum(x * x + 2 * z)
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])
print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")
@tf.function
@tf.function
def compute_gradient_conditional(x):
with tf.GradientTape() as tape:
if tf.reduce_sum(x) > 0:
y = x * x
else:
y = x * x * x
return tape.gradient(y, x)
x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
Tudo estava claro?
Obrigado pelo seu feedback!
Seção 2. Capítulo 5